电脑的运行内存是它不直接存储文件,但它关系到手机的流畅性,首先,我们应该明白,运行内存并不是用来存储文件的,它更像是数据和处理器间的传输站。当我们在移动终端之上打开应用程序时,运行的内存自然会被占用。
在任务管理器中就可以看到是否两个内存都在运行。
1.击电脑下方属性栏选择任务管理器。
2.点击上方的性能选项卡。
3.图中蓝笔圈注的即为已经使用的插槽。
注意:1/4表示共有4个插槽,1个已经使用。2/4表示共有4个插槽,2个已经使用。以此类推即可。
您好,要查看您的电脑支持多大的内存条,您可以按照以下步骤操作:
1. 打开“控制面板”。
2. 选择“系统和安全”。
3. 选择“系统”。
4. 在“系统”窗口中,您将看到安装在您的计算机上的处理器、系统类型和安装的内存(RAM)量的详细信息。
5. 在右侧的“系统”窗格中,您将看到一个“安装的内存(RAM)”部分。
6. 查看“安装的内存(RAM)”部分中列出的已安装内存(RAM)的总量。
7. 在同一窗格中,您还将看到“可用插槽”和“每个插槽的最大容量”的信息。
8. 您可以使用这些信息来确定您的计算机支持多大的内存条。
请注意,您的计算机的内存容量可能受到处理器和主板的限制。如果您不确定您的计算机支持多大的内存条,请查看您的计算机的文档或联系制造商的技术支持部门。
电脑的运行内存是决定了电脑的运行速度的关键因素,而硬盘大小是决定了电脑的存储内存,现在为大家介绍查看电脑运行内存的方法。操作方法:
1、在Windows设置中点击“系统”。
2、点击“关于”。
3、这时可以看到本机的“已安装的内存”为4.00GB,即本机的运行内存为4.00GB。也可以使用360驱动大师硬件检测。
所谓的 KB MB GB TB 是指内存大小的单位 他们都有 B , 所以先说说B 吧, B是一个电脑存储的基本单位(字节),1个英文字符是1个字节,也就是1B,1个汉字为2个字符,也就是2B。 然后再说 K ,数学学过吧, K 是千的意思, KB也就是1000字节,但计算机的运算和数学有所不同,是1024字节为 1KB,所以说 1024B=1KB 再说 M ,M 是兆的意思,运算也是类似 , 以1024进一位, 也就是说1024KB=1MB 接着 G ,依此类推 , 1024 MB = 1 GB 综上所述 1024 B = 1 KB ; 1024 KB = 1 MB ; 1024 MB = 1 GB所谓流量,是指单位时间内流经封闭管道或明渠有效截面的流体量,又称瞬时流量。 手机上网便会耗费流量,流量就跟你电脑上网一样.只不过.电脑上网的是交的网费什么的/包月什么的..手机也有包月/但是比电脑包月便宜.30M的流量包月为5元.还有更多的流量包月套餐.有了流量就可以为手机上网节省钱.平时手机上网没有包月的话.上一次.不满1M算1M.要收你1元的..30M够你上QQ聊天.上网看书.一天24小时都没有问题.一个月都用不完30M的.只要你不用手机下载游戏歌曲.
acepro运行内存查看方法:
1,在手机中打开设置,在设置中找到运存与存储空间并点击打开。
2、找到并点击运行内存。
3、即可在显示的界面查看剩余可用运行内存。
第一步进去oppo手机桌面之后,点击设置。
第二步进去设置之后,点击其他设置。
第三步进去其他设置之后,点击开发者选项。
第四步进去开发者选项之后,然后点击正在运行的服务。
第五步进去之后,可以看到运行内存使用情况,根据需要查看
一种参数,一般存储在内存条的SPD上。2-2-2-8 4个数字的含义依次为:CAS Latency(简称CL值)内存CAS延迟时间,他是内存的重要参数之一,某些牌子的内存会把CL值印在内存条的标签上。RAS-to-CAS Delay(tRCD),内存行地址传输到列地址的延迟时间。Row-precharge Delay(tRP),内存行地址选通脉冲预充电时间。Row-active Delay(tRAS),内存行地址选通延迟。这是玩家最关注的4项时序调节,在大部分主板的BIOS中可以设定,内存模组厂商也有计划的推出了低于JEDEC认证标准的低延迟型超频内存模组,在同样频率设定下,最低“2-2-2-5”这种序列时序的内存模组确实能够带来比“3-4-4-8”更高的内存性能,幅度在3至5个百分点。
在一些技术文章里介绍内存设置时序参数时,一般数字“A-B-C-D”分别对应的参数是“CL-tRCD-tRP-tRAS”,现在你该明白“2-3-3-6”是什么意思了吧?!^_^下面就这几个参数及BIOS设置中影响内存性能的其它参数逐一给大家作一介绍:
一、内存延迟时序“CL-tRCD-tRP-tRAS”的设置
首先,需要在BIOS中打开手动设置,在BIOS设置中找到“DRAM Timing Selectable”,BIOS设置中可能出现的其他描述有:Automatic Configuration、DRAM Auto、Timing Selectable、Timing Configuring By SPD等,将其值设为“Menual”(视BIOS的不同可能的选项有:On/Off或Enable/Disable),如果要调整内存时序,应该先打开手动设置,之后会自动出现详细的时序参数列表:
Command Per Clock(CPC)
可选的设置:Auto,Enable(1T),Disable(2T)。
Command Per Clock(CPC:指令比率,也有翻译为:首命令延迟),一般还被描述为DRAM Command Rate、CMD Rate等。由于目前的DDR内存的寻址,先要进行P-Bank的选择(通过DIMM上CS片选信号进行),然后才是L-Bank/行激活与列地址的选择。这个参数的含义就是指在P-Bank选择完之后多少时间可以发出具体的寻址的L-Bank/行激活命令,单位是时钟周期。
显然,也是越短越好。但当随着主板上内存模组的增多,控制芯片组的负载也随之增加,过短的命令间隔可能会影响稳定性。因此当你的内存插得很多而出现不太稳定的时间,才需要将此参数调长。目前的大部分主板都会自动设置这个参数。
该参数的默认值为Disable(2T),如果玩家的内存质量很好,则可以将其设置为Enable(1T)。
CAS Latency Control(tCL)
可选的设置:Auto,1,1.5,2,2.5,3,3.5,4,4.5。
一般我们在查阅内存的时序参数时,如“3-4-4-8”这一类的数字序列,上述数字序列分别对应的参数是“CL-tRCD-tRP-tRAS”。这个3就是第1个参数,即CL参数。
CAS Latency Control(也被描述为tCL、CL、CAS Latency Time、CAS Timing Delay),CAS latency是“内存读写操作前列地址控制器的潜伏时间”。CAS控制从接受一个指令到执行指令之间的时间。因为CAS主要控制十六进制的地址,或者说是内存矩阵中的列地址,所以它是最为重要的参数,在稳定的前提下应该尽可能设低。
内存是根据行和列寻址的,当请求触发后,最初是tRAS(Activeto Precharge Delay),预充电后,内存才真正开始初始化RAS。一旦tRAS激活后,RAS(Row Address Strobe )开始进行需要数据的寻址。首先是行地址,然后初始化tRCD,周期结束,接着通过CAS访问所需数据的精确十六进制地址。期间从CAS开始到CAS结束就是CAS延迟。所以CAS是找到数据的最后一个步骤,也是内存参数中最重要的。
这个参数控制内存接收到一条数据读取指令后要等待多少个时钟周期才实际执行该指令。同时该参数也决定了在一次内存突发传送过程中完成第一部分传送所需要的时钟周期数。这个参数越小,则内存的速度越快。必须注意部分内存不能运行在较低的延迟,可能会丢失数据,因此在提醒大家把CAS延迟设为2或2.5的同时,如果不稳定就只有进一步提高它了。而且提高延迟能使内存运行在更高的频率,所以需要对内存超频时,应该试着提高CAS延迟。
该参数对内存性能的影响最大,在保证系统稳定性的前提下,CAS值越低,则会导致更快的内存读写操作。CL值为2为会获得最佳的性能,而CL值为3可以提高系统的稳定性。注意,WinbondBH-5/6芯片可能无法设为3。
RAS# to CAS# Delay(tRCD)
可选的设置:Auto,0,1,2,3,4,5,6,7。
该值就是“3-4-4-8”内存时序参数中的第2个参数,即第1个4。RAS# to CAS# Delay(也被描述为:tRCD、RAS to CAS Delay、Active to CMD),表示"行寻址到列寻址延迟时间",数值越小,性能越好。对内存进行读、写或刷新操作时,需要在这两种脉冲信号之间插入延迟时钟周期。在JEDEC规范中,它是排在第二的参数,降低此延时,可以提高系统性能。建议该值设置为3或2,但如果该值设置太低,同样会导致系统不稳定。该值为4时,系统将处于最稳定的状态,而该值为5,则太保守。
如果你的内存的超频性能不佳,则可将此值设为内存的默认值或尝试提高tRCD值。
Min RAS# Active Timing(tRAS)
可选的设置:Auto,00,01,02,03,04,05,06,07,08,09,10,11,12,13,14,15。
该值就是该值就是“3-4-4-8”内存时序参数中的最后一个参数,即8。Min RAS# Active Time (也被描述为:tRAS、Active to Precharge Delay、Row Active Time、Precharge Wait State、Row Active Delay、Row Precharge Delay、RAS Active Time),表示“内存行有效至预充电的最短周期”,调整这个参数需要结合具体情况而定,一般我们最好设在5-10之间。这个参数要根据实际情况而定,并不是说越大或越小就越好。
如果tRAS的周期太长,系统会因为无谓的等待而降低性能。降低tRAS周期,则会导致已被激活的行地址会更早的进入非激活状态。如果tRAS的周期太短,则可能因缺乏足够的时间而无法完成数据的突发传输,这样会引发丢失数据或损坏数据。该值一般设定为CAS latency + tRCD + 2个时钟周期。如果你的CAS latency的值为2,tRCD的值为3,则最佳的tRAS值应该设置为7个时钟周期。为提高系统性能,应尽可能降低tRAS的值,但如果发生内存错误或系统死机,则应该增大tRAS的值。
如果使用DFI的主板,则tRAS值建议使用00,或者5-10之间的值。
Row Precharge Timing(tRP)
可选的设置:Auto,0,1,2,3,4,5,6,7。
该值就是“3-4-4-8”内存时序参数中的第3个参数,即第2个4。Row Precharge Timing (也被描述为:tRP、RAS Precharge、Precharge to active),表示"内存行地址控制器预充电时间",预充电参数越小则内存读写速度就越快。
tRP用来设定在另一行能被激活之前,RAS需要的充电时间。tRP参数设置太长会导致所有的行激活延迟过长,设为2可以减少预充电时间,从而更快地激活下一行。然而,想要把tRP设为2对大多数内存都是个很高的要求,可能会造成行激活之前的数据丢失,不能顺利地完成读写操作。对于桌面计算机来说,推荐预充电参数的值设定为2个时钟周期,这是最佳的设置。如果比此值低,则会因为每次激活相邻紧接着的bank将需要1个时钟周期,这将影响DDR内存的读写性能,从而降低性能。只有在tRP值为2而出现系统不稳定的情况下,将此值设定为3个时钟周期。
如果使用DFI的主板,则tRP值建议2-5之间的值。值为2将获取最高的性能,该值为4将在超频时获取最佳的稳定性,同样的而该值为5,则太保守。大部分内存都无法使用2的值,需要超频才可以达到该参数。
Row Cycle Time(tRC)
可选的设置:Auto,7-22,步幅值1。
Row Cycle Time(tRC、RC),表示“SDRAM行周期时间”,它是包括行单元预充电到激活在内的整个过程所需要的最小的时钟周期数。
其计算公式是:row cycle time (tRC) = minimum row active time(tRAS) + row precharge time(tRP)。因此,设置该参数之前,你应该明白你的tRAS值和tRP值是多少。如果tRC的时间过长,会因在完成整个时钟周期后激活新的地址而等待无谓的延时,而降低性能。然后一旦该值设置过小,在被激活的行单元被充分充电之前,新的周期就可以被初始化。
在这种情况下,仍会导致数据丢失和损坏。因此,最好根据tRC = tRAS + tRP进行设置,如果你的内存模块的tRAS值是7个时钟周期,而tRP的值为4个时钟周期,则理想的tRC的值应当设置为11个时钟周期。
Row Refresh Cycle Time(tRFC)
可选的设置:Auto,9-24,步幅值1。
Row Refresh Cycle Time(tRFC、RFC),表示“SDRAM行刷新周期时间”,它是行单元刷新所需要的时钟周期数。该值也表示向相同的bank中的另一个行单元两次发送刷新指令(即:REF指令)之间的时间间隔。tRFC值越小越好,它比tRC的值要稍高一些。
如果使用DFI的主板,通常tRFC的值不能达到9,而10为最佳设置,17-19是建议值。建议从17开始依次递减来测试该值。大多数稳定值为tRC加上2-4个时钟周期。
Row to Row Delay(RAS to RAS delay)(tRRD)
可选的设置:Auto, 0-7,每级以1的步幅递增。
Row to Row Delay,也被称为RAS to RAS delay (tRRD),表示"行单元到行单元的延时"。该值也表示向相同的bank中的同一个行单元两次发送激活指令(即:REF指令)之间的时间间隔。tRRD值越小越好。
延迟越低,表示下一个bank能更快地被激活,进行读写操作。然而,由于需要一定量的数据,太短的延迟会引起连续数据膨胀。于桌面计算机来说,推荐tRRD值设定为2个时钟周期,这是最佳的设置,此时的数据膨胀可以忽视。如果比此值低,则会因为每次激活相邻紧接着的bank将需要1个时钟周期,这将影响DDR内存的读写性能,从而降低性能。只有在tRRD值为2而出现系统不稳定的情况下,将此值设定为3个时钟周期。
如果使用DFI的主板,则tRRD值为00是最佳性能参数,4时能达到最高的频率。通常2是最合适的值,00看上去很奇怪,但有人也能稳定运行在00-260MHz。
Write Recovery Time(tWR)
可选的设置:Auto,2,3。
Write Recovery Time (tWD),表示“写恢复延时”。该值说明在一个激活的bank中完成有效的写操作及预充电前,必须等待多少个时钟周期。这段必须的时钟周期用来确保在预充电发生前,写缓冲中的数据可以被写进内存单元中。同样的,过低的tWD虽然提高了系统性能,但可能导致数据还未被正确写入到内存单元中,就发生了预充电操作,会导致数据的丢失及损坏。
如果你使用的是DDR200和266的内存,建议将tWR值设为2;如果使用或DDR400,则将tWD值设为3。如果使用DFI的主板,则tWR值建议为2。
Write to Read Delay(tWTR)
可选的设置:Auto,1,2。
Write to Read Delay (tWTR),表示“读到写延时”。三星公司称其为“TCDLR (last data in to read command)”,即最后的数据进入读指令。它设定向DDR内存模块中的同一个单元中,在最后一次有效的写操作和下一次读操作之间必须等待的时钟周期。
tWTR值为2在高时钟频率的情况下,降低了读性能,但提高了系统稳定性。这种情况下,也使得内存芯片运行于高速度下。换句话说,增加tWTR值,可以让内容模块运行于比其默认速度更快的速度下。如果使用DDR266或DDR333,则将tWTR值设为1;如果使用DDR400,则也可试着将tWTR的值设为1,如果系统不稳定,则改为2。
Refresh Period(tREF)
可选的设置:Auto, 0032-4708,其步进值非固定。
Refresh Period (tREF),表示“刷新周期”。它指内存模块的刷新周期。
先请看不同的参数在相同的内存下所对应的刷新周期(单位:微秒,即:一百万分之一秒)。?号在这里表示该刷新周期尚无对应的准确数据。
1552= 100mhz 2064= 133mhz 2592= 166mhz 3120= 200mhz ---------------------
3632= 100mhz 4128= 133mhz
4672= 166mhz
0064= 200mhz
---------------------
0776= 100mhz 1032= 133mhz 1296= 166mhz 1560= 200mhz
---------------------
1816= 100mhz 2064= 133mhz 2336= 166mhz 0032= 200mhz ---------------------
0388= 100mhz(15.6us)
0516= 133mhz(15.6us)
0648= 166mhz(15.6us)
0780= 200mhz(15.6us)
---------------------
0908= 100mhz(7.8us)
1032= 133mhz(7.8us)
1168= 166mhz(7.8us)
0016= 200mhz(7.8us)
---------------------
1536= 100mhz(3.9us)
2048= 133mhz(3.9us)
2560= 166mhz(3.9us)
3072= 200mhz(3.9us)
---------------------
3684= 100mhz(1.95us)
4196= 133mhz(1.95us)
4708= 166mhz(1.95us)
0128= 200mhz(1.95us)
如果采用Auto选项,主板BIOS将会查询内存上的一个很小的、名为“SPD”(Serial Presence Detect )的芯片。SPD存储了内存条的各种相关工作参数等信息,系统会自动根据SPD中的数据中最保守的设置来确定内存的运行参数。如过要追求最优的性能,则需手动设置刷新周期的参数。一般说来,15.6us适用于基于128兆位内存芯片的内存(即单颗容量为16MB的内存),而7.8us适用于基于256兆位内存芯片的内存(即单颗容量为32MB的内存)。注意,如果tREF刷新周期设置不当,将会导致内存单元丢失其数据。
另外根据其他的资料显示,内存存储每一个bit,都需要定期的刷新来充电。不及时充电会导致数据的丢失。DRAM实际上就是电容器,最小的存储单位是bit。阵列中的每个bit都能被随机地访问。但如果不充电,数据只能保存很短的时间。因此我们必须每隔15.6us就刷新一行。每次刷新时数据就被重写一次。正是这个原因DRAM也被称为非永久性存储器。一般通过同步的RAS-only的刷新方法(行刷新),每行每行的依次刷新。早期的EDO内存每刷新一行耗费15.6us的时间。因此一个2Kb的内存每列的刷新时间为15.6?s x2048行=32ms。